
900 TIE NYOXMNCE.OF COLLISIONS FOR NENTONIfU DOZES NITH Ini
NIOEE VM ES(U) ROYAL SIGNALS Am EfiOf
ISTOLISHMENT MALVERN (ENGLAND) 1 5 SERNSON OCT I?

W~L*SSIFIED RSRE-6?13 PRIC-DR-104725 F/O 12/4 ML

ILI



LI

fl11y62R 11111 .4  111.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS lA A



AD-A191 888 !f142

f~ FILE WyReport No.871

IGNLSAND RADA ESTABLISHMENT,
MALVERN

lit

ELINCTIE

mmcwUOM CiWmyo DEFE



ROYAL SIGNALS AND RADAR ESTABLISHMENT

Report 87013

Title: The Avoidance of Collisions for Newtonian Bodies
with Hidden Variables

Author: B D Bramson

Date: October 1987

/

SUMMARY

The collision avoidance of a pair of uniformly moving bodies is
considered in three dimensions. The relative motion of the bodies
yields an expression relating the time to closest approach, the minimum
range, the current range and its rate of change, other variables being
unobservable. A Boolean relation is then proposed that is satisfied" .-Ae
whenever the minimum range and time to closest approach simultaneously
fall below given thresholds. The relation is further studied, in
particular with regard to the issue of false and premature alarms.
An airborne collision avoidance system is a possible application. , -
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1 INTRODUCTION

This paper concerns the relative motion in three spatial dimensions of
a pair of uniformly moving bodies, idealised as point particles. The
purpose is to generate relations between observables that will be useful
for the prediction and avoidance of collisions. Applications include
the design of an airborne collision avoidance system.

The problem would appear to be mathematically trivial save for a crucial
engineering constraint. It is given that the apparatus for collision
avoidance, carried by at least one of the bodies, is capable of
measuring directly only the relative range of the bodies and its rate
of change in time. It is assumed that further time derivatives are
not computable with sufficient accuracy and that other observables,
like relative bearing and velocity, are hidden.

Section 2 discusses the relative motion of the two bodies, expressions
being presented for the time, t, to closest approach, henceforth called
the warning time, and the minimum range, m. Both m and t depend on the
relative velocity, v, and are therefore unobservable; but an expression
is found, independent of v, that relates m and t to the current range,
r, and its rate of change, r.

In section 3, a pair of threshold constants are introduced, mu and
tau, for m and t respectively, mu defines a minimum safe separation
for the two bodies while tau defines a minimum warning time whenever mu
exceeds m. Indeed, a Boolean relation, danger, is defined between r,
r, m, t, mu and tau but, being dependent on v, it is unobservable. An
expression is further derived for the time for r to reach mu, given
appropriate pre-conditions.

In section 4, an observable Boolean relation, alarm, is presented
involving r, i, mu and tau. Its strength lies in its ability to flag
danger reliably while its weakness lies in its tendency to generate
either false or premature alarms.

Section 5 briefly illustrates the alarm in configuration space.

2 UNIFORM RELATIVE MOTION

At time u, consider a pair of uniformly moving point particles with
relative position vector X(u) and (constant) relative velocity vector
X. (* denotes d/du.) Let their relative range be r(u), being the
magnitude of X(u), so that their relative range rate is i(u). Further.
let their relative speed be v, being the magnitude of X.

To calculate the warning time, t(u), and the minimum range, m, the
equation of relative motion is used. This determines the relative
position vector at time u from that at time 0 according to

X(u) - X() + X u , (2.1)

whence the behaviour of the relative range is given by

r' (u) - r*(0) + 2r(O) r(O) u + v1 u1  (2.2)

Henceforth assume that v /- 0. This allows us to choose the origin of
time to correspond to the instant of closest approach. This being so,
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r(O) - m, r(O) - 0 and t - -u. Thus, dropping the argument (u),

r m + vI u 2 (2.3)

Differentiating with respect to u and using t - -u provides an
expression for the warning time,

t- - r r Iv (2.4)

while the minimum range, m, is given by

m r (l /v) (2.5)

Note from (2.4) that.-.

(r > o AND < 0) - t > . (2.6)

For v - 0, m and t are both undefined. Even for v /0 0, neither mr
nor t are known since v is a hidden variable. Nevertheless, they
possess a relation that is independent of v and this follows from
equations (2.3) and (2.4):

m ,ra + r r t (2.7)

When the bodies are converging in range, r < 0, it follows that -*

m 1 + r iI t-raND t> 0 (2.8)

which, for given r and r (< 0), is illustrated in figure 1.

tA

-t..-"S

r/jil

r m

Figure 1: Knowing r and r (< 0) yields a relation between
the warning time t and the minimum range m. 0

3 THE IMPOSITION OF THRESHOLDS

Let us now impose a minimum safe separation on the two bodies, call it
mu (> 0). We require that r > mu for all time. Further, if m <- mu < r
and i < 0, we shall wish to be alerted should the warning time be less
than a certain threshold, tau (> 0), this being considered dangerous.
Within this context it is vital to have a rigorous definition of
danger. So, consider the time dependent Boolean expression
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danger - (3.1)
(r <- mu OR i < 0 AND m <- mu AND t <- tau)

(AND binds tighter than OR.),>

Sadly, unless r <- mu, danger is unobservable being dependent on v
and an attempt to resolve this is made in the following section.

To conclude this section, we calculate the time, tmu, for r to reach
the critical value, mu, given that m <- mu.

Using equation (2.3) we see that if m <- mu, r reaches mu when

u - (mu - mI) / v (3.2)

The two solutions for m < mu correspond to events before and after
closest approach. It follows that the time to reach threshold before
the instant of closest approach is given by S

tmu - t - (sqrt(iu - m )) / v . (3.3)

The relative motion of the two bodies is illustrated in figure 2.

< -- -------------------- v t ------------------- >
1 ----- v t ------- mu-

mu m
r

2

Figure 2: The motion of 1 relative to 2 when
r < 0 AND m <- mu -< r.

4 AN OBSERVABLE ALARM

The Boolean relation, danger, defined in equation (3.1) is unobservable;
but in section 2 we derived a relation (2.7) between m and t in terms
only of observable quantities. Constraining m and t as in (3.1) imposes %
constraints on r' from (2.7). Accordingly, define the Boolean
expression, alarm, by

alarm - (4.1)
(r <- mu OR r < 0 AND rA <- mu r r tau)

Using the relations (3.1), (4.1) and (2.8), it follows that

danger -> alarm (4.2)

Unlike danger, alarm is observable and the question therefore arises
as to whether it may be used in place of danger. To examine this
possibility, we use equations (2.3), (2.4) and (2.6) together with the
fact that u - -t, to rewrite (4.1) as
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alarm -(4.3)

(MIn+ v I t 2 <-mu aORt > 0 AND ma + v 3 t(t -tau) <- ) mu/

To examine this further, take the conjunction with

t <- 0 OR t > 0 (4.4)

and use the property that

(t > 0 AND m +v t <- ) -> (4.5)
(t > 0 AND m 2 + va t(t - tau) <- mu4)

This yields the expression % ,

alarm - (4.6) .%,.

(t <- 0 AND m +v t <- muZ OR
t > 0 AND m + v2 (t -tau/2)2 <- muI + vI taut/4)

vhich defines the union of the interiors of quadrants of two ellipses

in the (t, m) plane, with centres (0, 0) and (tau/2, 0) respectively,
and is illustrated in figure 3.

arrow
of time

-mu/v tau/2 tau tau/2 + max/v t *

Figure 3: The shaded regions comprise alarm. The arrow

of time is the direction of increasing u.

Note that the alarm is raised only if m is bounded above by a certain
velocity dependent expression: 4M

alarm -> m <- max (4.7)

with max - sqrt(mu + v tau /4) (4.8) - ,

Further, the boundary of alarm includes the points:

A (0, mu) , (4.9)
3 (tau/2, max) ,
C (tau, ,u)
D (tau/2 + max/v. 0)

and 7 (-mu/v, 0) "%

4' ,,



In fact alarm comprises the disjunction of four Boolean expressions
corresponding to the four distinct regions in figure 3. These may be
identified formally by forming the conjunction of (4.3) with the
expression

(m <- mu OR m > mu) AND (4.10) 1
(t <- 0 OR 0 < t <- tau OR t > tau)

yielding

alarm - (4.11)
1 (t <- 0 AND m + v t <- mu OR
2 0 < t <- tau AND m <- mu OR a t
3 0 < t < tau AND m > mu AND m + v t(t -tau) <- mu OR

4 t > tau AND m < mu AND m2 + v2 t(t - tau) <- muZ)

Region 1 is bounded by the lines OA and OF and the ellipse segment AF
while region 2 is bounded by the rectangle OACE. The union of regions
1 and 2 correspond to danger. From (4.2) we expect the alarm to be
raised here. The remainder of alarm comprise5: region 3, a false alarm,
bounded by the ellipse segment ABC and the line AC; and region 4, a
premature alarm, bounded by the ellipse segment CD and by the lines CE
and ED. S

We now examine the behaviour of alarm for the two cases, m <- mu and
m > mu. In each case consider the motion of a point in the (t, m)
plane, parallel to the t axis and in the direction of t decreasing,
representing the relative motion of the two bodies.

CASE 1 m <- mu. The alarm comes on when the warning time satisfies

2 2 .

t - tau/2 + 1/v sqrt(max - m ) >- tau (4.12)

corresponding to a point on the ellipse segment CD, and goes off when

t - -1/v sqrt(mu - m ) , (4.13)

corresponding to a point on the ellipse segment AF. ,

When m - mu the motion follows CA, the alarm coming on when t - tau and
going off when t - 0.

When m < mu a premature warning is given when the motion encounters the
segment CD. Indeed, the alarm comes on for a value of t, given by
equation (4.12), that may be arbitrarily large for v small enough,
approximating to mu/v for a slow, collision course (along DEOF).
However, the time t mu for r to reach its threshold mu is bounded above
by tau. To see this, use equations (3.3) and (4.3) to show that, on the
segment CD,

t-mu - t - sqrt(t(t - tau)) AND t >- tau . (4.13)

. .

t mu decreases monotonically from tau as t increases from tau and is .
bounded below by tau/2 (see appendix). The expression (4.13) includes
the case when m - mu (tmu - t - tau) and is illustrated in figure 4.

After region 4 the motion proceeds into region 2 and thence, following
the instant of closest approach, into region 1 where the bodies while
diverging in range are still within a distance mu apart.
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tau arrow of time

0',Z

tau/2_

tau tau.

Figure 4: When m <- mu, the alarm is raised as soon as t mureaches a value that satisfies tan/2 < t mu <--tau.

CASE 2 m > mu. This appears to be a false alarm. The alarm is raised .

if m <- max, defined in (4.8). It comes on when

t - tau/2 + 1/v sqrt(max m (4.14)

which satisfies tau/2 <- t < tau, and goes off when N.N-.

t - tau/2 - 1/v sqrt(max - m ) (4.15)

satisfying 0 < t < tau/2. %*

For v small compared with mu/tau, the upper bound for m, max, achieved
at B, lies close to mu while for large v it approximates to v tau/2. 0,

To conclude this section a brief comparison will be made between alarm
and one version of the modified tau criterion [1]. Versions differ on
their behaviour following the instant of closest approach, the one
chosen here being given by

modified tau - (4.16)
(r <-mu OR < 0 AND r <- mu- r tau)

THEOREM alarm -> modified-tau .(4.17)

In other words, modifiedtau is raised whenever alarm is raised. This
follows swiftly from the definition (4.1) on noting that

r > mu -> mu -r r tau < r (mu- r tau) (4.18)

5 CONFIGURATION SPACE PICTURE

The analysis in the previous section concerned relations between the
minimum range, a, the warning time, t, and the time, tmu, for the range
threshold to be reached, when the alarm is raised. Following the
spirit of work by Ford [1, 2], it is also convenient to illustrate the
boundary of alarm in configuration space.
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Using X and i to denote the relative position and velocity vectors at
time u, as in section 2, and defining max by (4.8), the expression
(4.1) for alarm may be rewritten

alarm - (IX! <- mu OR (5.1)
X.1< 0 AND IX + tau/2 X1 <- max);

which represents the union of the interiors of a pair of spheres whose
radii are mu and sqrt(mul + vZ tau2/4) and whose centres lie in the
direction of relative motion, a distance v tau/2 apart. This is
illustrated in figure 5 from which many of the properties previously
derived receive a ready interpretation.

relative 1
Figure 5: Alarm comprises the union of the interiors

of a pair of spheres in configuration space.

6 CONCLUDING REMARKS% re

This paper has discussed the collision avoidance of two Newtonian bodies
in uniform motion when only the relative range and its rate of change
are observable. In section 3 the concept of danger was defined in terms
of given threshold constants, mu and tau, by

danger - (range <- mu OR (6.1) .'

range rate < 0 AND minimum range <- mu
AND warning time <- tau) -

However, danger is in general unobservable, the minimum range, m, and
warning time, t, depending on the relative velocity, v. Hence, an
observable Boolean relation, alarm, was introduced in section 4:

alarm - (r <- mu OR (6.2)
< 0 AND rI <- mu r r tau) ;

and this is raised whenever there is danger:

danger -> alarm (6.3)

The question then arose as to the use of alarm to indicate danger.
In particular, if the two bodies are converging in range (i < 0) what
are the implications of alarm? The conclusions, illustrated in figures
3 and 4, amount to two Boolean cases in addition to danger. One of
these involves the time t mu for r to reach its threshold mu.
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To summarise, for m <- mu the alarm comes on with t >- tau as soon as
tmu becomes small enough, its value lying between tau/2 and tau and
depending on v; and this will happen before danger is reached. Whether
this is regarded as a premature alarm depends on whether a warning that
r is approaching mu is considered useful. After the instant of closest
approach the alarm goes off as soon as r exceeds mu. ,

Secondly, an alarm is raised for mu < m <- sqrt(mu + v tau 2/4)
as soon as t becomes small enough, its value, dependent on v, lying
between tau/2 and tau. The expression bounding m here behaves like mu
for v small compared with mu/tau and like v tau/2 for large v. Finally,
the alarm goes off for some value of t lying between 0 and tau/2.
Whether this case is regarded as a false alarm depends on whether a
level of protection that increases with v is considered useful. "

With regard to its use for a collision avoidance system, Ford [2] has
compared the behaviour of alarm with that of other criteria. In
relation to this it was proved, at the end of section 4, that

alarm -> modifiedtau , (6.4)

where modifiedtau - (6.5)
(r <- mu OR r < 0 AND r <- mu- r tau)

Thus modified tau is raised whenever alarm is raised. However, the
converse is not true: modifiedtau is raised more frequently than alarm. IV0
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APPENDIX

Consider the behaviour of the real-valued partial function

f(t) - IF t >- tau THEN t - sqrt(t(t - tau)) , (Al)

with tau (> 0) regarded as fixed. To examine f, put , -

f(t) - g(x) with t - tau cosh x , for x >- 0 (A2)

As z increases from 0, so t increases from tau. Standard properties of
hyperbolic functions may then be used to show that S

g - tau/2 (1 + exp(-2x)) , (A3)

which decreases monotonically from tau, tending to tau/2.
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